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LETTER TO THE EDITOR 

On the conservation of volume during particle coagulation 

S Simons 
Department of Applied Mathematics, Queen Mary College, Mile End Road, London E l  
4NS, UK 

Received 23 November 1982 

Abstract. If (dn/dt), is the coagulational rate of change of the distribution function n (U) 
for a system of particles, it is shown that jr o(dn/dt) ,  do is not necessarily zero. Rather, 
depending on the coagulation kernel and the behaviour of n (U) as v +a, it may be zero, 
non-zero and finite, or infinite. This has implications for the asymptotic behaviour of the 
solution of the steady state, time-independent coagulation equation. The results are 
applied to Brownian and gravitational coagulation. 

Consider a system of coagulating particles described by a distribution function n ( v ,  t ) .  
Then the rate of change of n due to coagulation is given by the standard result 

[an ( u ) / a t ] ,  = i lo" ~ ( u ,  U - u)n  (u )n  (v  - U )  du - n (U) lom ~ ( u ,  v ) n  (U) du (1) 

where P(u, U )  is the coagulation kernel. It is usually considered that 
m 

Q = lo u(an/at) ,  dv = 0 

(see, for example, Friedlander (1977) or Twomey (1977)), and the reasoning for this 
is twofold. Firstly, since each particle coagulation separately conserves volume, 
equation (2) must hold since the left-hand side represents the rate of change of volume 
for the whole system of particles. Secondly, equation (2) can be proved mathematically, 
using equation (1). We have 

m 

Q = 5 dv 1" vP(u, v -u)n(u)n(c - U )  du - lom dv lom uP(u, v ) n  ( u ) n ( v )  du. (3) 
0 0 

We substitute w = v -U in the first term on the right-hand side of equation (3), and 
this then becomes 

5 lom dw lom (U + w)P(u, w)n(u)n(w) du 

which cancels out with the second term on the RHS of equation (3) on using P ( u ,  w )  = 

P(W, U). 
The main purpose of the present contribution is to point out that despite the above 

remarks equation (2) is not necessarily true and that, depending on the behaviour of 
n (U) as U + CO, Q may be zero, non-zero but finite, or infinite. This has consequences 
for the asymptotic behaviour of the solution of the stationary state, time-independent 
coagulation equation as we shall show presently. 
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The basis of our contention is that the mathematical procedure of integrating the 
RHS of equation (1) from 0 to 00 requires more careful consideration than was given 
in deriving equation ( 3 )  above. In fact, 

lOvdu lom uP(u, u ) n  (u )n  ( u )  du 
V 

Q = V-m lim ( ijo du /o"uP(u, v - u ) n ( u ) n ( u  - U )  du - 

(4) 

On substituting w = U -U in the first term on the RHS of equation (4) and using 
P(u,  w )  = P ( w ,  U), we readily obtain 

V v - w  

wP(u ,  w ) n  ( u ) n  ( w )  du - I,'dv low uP(u, v ) n ( u ) n ( u )  du 

uP(u,  u ) n ( u ) n ( v )  du . 1 
v m  

= -?i_mx( Jo dv JV+ 
To proceed further with evaluation of the limit in equation ( 5 ) ,  we now invoke the 
fact that P is invariably a homogeneous function of U and U, so that 

(6) P(Au, A u )  = A 'P(u, U )  

n ( v ) a u 7  (7) 

for some value of r. Further, we shall assume that for sufficiently large values of U 

for some value of s, and that this effectively holds for U > p  where p is a large but 
finite quantity. We now divide the v integration interval in equation ( 5 )  (0 to V )  
into three sub-intervals, 0 to p, p to V - p and V - p to V. Then for p < v < V - p, 
both U and U in the integrand of ( 5 )  will be greater than p so that the asymptotic 
form (7) will apply to both n ( u )  and n ( u ) .  Further, it may be shown that as V+co  
the contribution to the integral ( 5 )  arising from p < v < V - p  is greater than the 
contributions arising from 0 < U < p and V - p  < v < V. Now we are currently inter- 
ested in deciding whether the RHS of equation (5) is zero or non-zero, and in view of 
the above remarks this depends on whether 

is zero or non-zero. To decide this, we introduce new variables x and y defined by 
x = U/ V and y = v /  V and obtain 

making use of the above comments and equations (6) and (7). It follows immediately 
that when 

is convergent, Q will be zero only if 

s > i ( r + 3 ) .  (10) 
For s < t ( r  + 3), Q will be infinite, while if s = t ( r  + 3 ) ,  it will be non-zero and finite. 
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When, however, Y is divergent Q will be infinite if s ( r  + 3), while for s > 4 (r  + 3) 
further consideration is necessary as discussed below. 

In order to progress further, it is now necessary to specify more precisely the form 
of P ( x ,  y )  in order to discuss the convergence and divergence of Y. In all cases of 
interest the form of P ( x ,  y )  is a product of factors, each of the form l x p  * y p I v  where 
(Y and y may be positive or negative. Thus for the two-dimensional region over which 
the double integral (9) is taken, Y may become infinite for the regions {x = a, 0 S y S 
l}, { y  = 0,  1 s x S CO}, { x  = 0 ,  y = 1). Since it is the numerically largest powers (positive 
or negative) of x and y which determine the corresponding convergence or divergence 
of Y, we may represent P ( x ,  y )  by 

l r / 2 )  (r/2) P ( x ,  Y 1 - x  Y max[(xly)", ( y l x ) ' ]  

for the purpose of investigating this convergence. Here 4 (20) is the largest power 
of ( x l y )  which arises in the product of the above-mentioned factors. Each P ( x ,  y )  is 
thus characterised for the convergence investigation by the pair of quantities r and 
4. We consider first the region { x  = a, 0 s y s l}, and find that the integral (9) will 
be convergent in the neighbourhood of this region if 

(11) 

Further, it transpires that the integral (9) will be convergent in the neighbourhood of 
both of the regions {y = 0 , l  s x s CO} and {x = 0, y = 1) if 

(12) 

It follows immediately from equations (11) and (12) that a necessary condition for Y 
to be convergent is that 

s > (r/2) + q + 1. 

s < ( r / 2 )  - q + 2. 

q <t.  
Y may diverge due to inequality (11) not being satisfied, and in that case 2 will be 
infinite if s c & ( r  + 3 )  and indeterminate if s > f ( r  + 3 )  (see equations (8) and (10)). If, 
however, Y diverges due only to  inequality (12) not being satisfied, there exists the 
possibility that 2 remains finite due to the variable V occurring in front of the integral 
in (8) as well as in its limits. It transpires that the condition (11) is then such as to 
make 2 zero. The above results may all be summarised as follows. If 4 <$, Q is 
infinite for s <4( r+3) ,  zero for s > $ ( r  + 3 )  and non-zero, finite for s = i ( r + 3 ) .  If 
q 3 4, Q is infinite for s s $ ( r  + 3), indeterminate for $ ( r  + 3) < s c ( r / 2 )  +q + 1 and zero 
for s > (r/2) + 4 + 1. 

As an illustration of these results we consider the case of Brownian coagulation 
where 

P ( x ,  y ) c c  ( x 1 I 3 +  y ' / 3 ) ( x - 1 / 3  + y - ' 1 3 )  

(Friedlander 1977). This corresponds to r = 0 and q = 3, so that Q is finite and 
non-zero for s = 2, being infinite for values smaller than this and zero for values greater 
than this. For gravitational coagulation 

P ( ~ ,  y )  tX 113 + 1 / 3 ) 3 l X  113 - 1/31 

assuming a size-independent coagulation efficiency. This corresponds to r = $ and 
4 = 3 so that Q is infinite for s S $, indeterminate for (F) < s s (S) and zero for s > s. 
If we take into account a commonly accepted efficiency factor (Pruppacher and Klett 
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1978), this multiplies the above gravitational P by 

m i n ~ x ” ~ ,  y ’ / ’ ] / [ 2 ( x  ‘I3 + y 

which gives r = $ and 4 = 0. Q is then finite and non-zero for s = $?, being infinite for 
smaller values and zero for greater values. 

Finally, we consider the error in the physical argument given earlier that Q must 
be zero since all the particle coagulations separately conserve volume. The essential 
point here is that Q as given by equation (2) need not represent the rate of change 
of volume for the whole system of particles, since the range of integration is infinite. 
For particle volumes in the interval 0 to V the rate of change of total material volume 
is 

V 

R (V)  = I v (War ) ,  du, 
0 

and this will be negative since coagulations correspond to a net flux of material to 
particles of larger volume. As V increases without limit there is clearly no necessity 
for R ( V )  to tend to zero since, because the particle volume is unbounded, there 
always exists the possibility of material flux to particles of larger volume. 

The conclusions reached above have important consequences for the solution of 
the stationary state, time-independent coagulation equation. If S ( u )  is the time- 
independent source term, this equation takes the form 

(an/at),+S(u) = 0, (14) 
and therefore 

r* 

Q + J uS(u)  du = 0. 
0 

If it were considered that Q must be zero, one would then deduce from equation (15) 
that equation (14) could only have a solution if l: uS(u)  du = 0, corresponding to no 
net flux of material into the particle system-this result is clearly incorrect. In fact, 
since it corresponds to the rate at which material is being fed into the particle system, 
lr u S ( u )  du is clearly non-zero and finite, and thus Q must be non-zero, but finite. 
This in turn means that, assuming the asymptotic form of the solution of equation 
(14) to behave as shown in (7), the value of s is subject to the constraints derived 
above for Q to be non-zero, but finite. Thus if 4 <a, s = b(r +3), while if 4 >$, 
3 (r + 3) < s s (r/2) + 4 + 1. Applying this to the cases considered earlier, we find that 
for Brownian coagulation s = 1.50, for gravitational coagulation with constant 
efficiency factor 2.17 < s < 2.33, and for gravitational coagulation with the efficiency 
factor (13), s = 2.17. 
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